A Unified Solution to Coverage and Search
in Explored and Unexplored Terrains Using Indirect Control

Amir Pirzadeh

Wesley Snyder

Center for Communications and Signal Processing
North Carolina State University
Raleigh, NC 27695-7911

Abstract

An algorithm is described which solves coverage and search
problems in either explored or unexplored terrains. The coverage
problem requires that the robot pass over all parts of the terrain
that is free of obstacles. The search problem requires that the
robot seek a specified target in a given terrain. The target need
not be present in the terrain; in that case, the algorithm will
realize the fact after a thorough search. In an explored terrain
problem, a model of the terrain is available indicating which re-
gions of the terrain are traversable. In an unexplored terrain
problem, such a model is not available, thus forcing the robot
to build the model by the use of sensors. It is proven that the
algorithm guarantees complete coverage and a thorough search
if physically possible. Furthermore, due to its use of indirect
control, the algorithm is not complicated, and thus, simple to
implement.

1 Introduction

This paper presents a new approach to a general class of prob-
lems in autonomous robot navigation. The solution is based on
the philosophy of indirect control. By indirect control we mean
that the algorithm presented here does not determine a desti-
nation for the robot and then calculate a complete path for the
robot to take. Instead, the algorithm controls the robot path
loosely by placing penalty costs along paths the robot may take,
thus directing the robot movement indirectly.

Four different problems are solved here using the indirect con-
trol strategy. These are coverage and search problems in either
explored or unexplored terrains. The coverage problem requires
that the robot pass over all parts of the terrain that is free of
obstacles. Possible applications of this problem are automatic
vacuum cleaners, automatic lawn mowers, land mine detectors,
etc. The search problem requires that the robot seek a specified
target in a given terrain.

For either the problem of coverage or of search, we may be
faced with one of two possible situations: we may already have
a model of the terrain we are covering or searching, or we may
have no prior knowledge of the exact locations of obstacles in the
terrain. These are referred to here as the explored and unexplored
terrain problems respectively.

Conventional path planning methods are based on the as-
sumption that the origin-destination pair is known. Thus, the
problem is reduced to that of finding a collision free path from
the robot initial position to the destination. As a result, these
methods typically involve searching a graph for the optimal or

CH2876-1/90/0000/2113%01.00 @

near optimal path [8][7] [1] [5]. Other methods for solving such
problems include the use of Voronoi diagrams [9], algebraic cost
functions [6], probability theory [4], and heuristics [2]. Yap [IO]
has a good survey on the evolution of path planning methods.
The problems solved in this paper, however, do not have a clear
destination. The coverage problem has the entire set of non-
obstructed space as its destination while the search problem does
not have a known destination (if any.)
Following is a list of assumptions made by the algorithm.
e The terrain boundary is assumed to be known to the robot
in terms of a relative distance to its initial position. (A
rectangular terrain is implied here with no loss of general-
ity.)

e The robot is assumed to have some means for recognizing
obstacles and calculating the distance to them. (In the
explored terrain problem, this is only required as a safety
measure.)

s The robot is assumed to be able to recognize the target
when in a direct line of sight. (This only applies to the
search problem.)

The underlying strategy of the algorithm is to divide the ter-
rain into cells. We shall refer to a cell in this paper as a unit
of area equal to the dimensions of the robot base. In the ex-
plored terrain problem, the algorithm knows a priori whether
each cell is obstructed or free of obstacles. In the unexplored
terrain problem, this information is gathered as the robot navi-
gates the terrain. Nevertheless, by dividing the terrain into cells,
we are able to navigate around obstacles of any shape since the
problem is now discrete.

Given the discrete terrain model presented above, we also
discretize the robot motion. More specifically, we limit the robot
movement to orthogonal directions designated as up, down, left,
and right. Since we have limited the robot motion (and therefore
sight) to the specified four directions, we will be dealing with a
four connected problem, that is, a cell is not considered to be
connected to its diagonal neighbors.

The following terminology will be used in this paper.

e cell | A unit of area equal to the dimensions of the robot
base.

o cell cost : The cost of covering a particular cell.

o direction cost . The cost of traveling in a particular direc-
tion.

efreecell : A cell that is completely free of obstacles and,
thus, traversable by the robot.

e obstructed cell . A cell that is obstructed and, thus, not
traversable by the robot.

The algorithm will be presented in three parts in order to
present a lower level understanding of the main components of
the algorithm. These three parts are composed of the main com-
ponent referred to as the base algorithm, and two additional com-
ponents called “looking ahead in space” and “looking ahead in
time”. Furthermore, three sets of results will be provided cor-
responding to the performance of the base algorithm and the
addition of the other two components so as to show the impact
of each component to the overall performance.

We will present the algorithm in detail as it would be applied
to the coverage of the explored terrain problem. Section will give
the minor modifications necessary for solving search problems
and section will give the modifications necessary for unexplored
terrains.

2 The Base Algorithm

This component of the algorithm guarantees complete cov-
erage in a coverage problem and a thorough search in a search
problem. The necessary conditions for this statement to hold and
the corresponding proof will be provided following an explanation
of the base algorithm.

The base algorithm:

1. Increment the current cell cost by «a.

2. Interrogate neighboring cells to determine the least costly
direction in which to travel. Thus, the total cost of traveling
in the direction dir is (provided there are no obstacles:)

direction_cost(dir)

= cell_cost(dir).
3. Choose the direction according to the priority: up, down,
right, left, in case of tie.

In the algorithm, step one tends to make the robot traverse
the terrain in such a manner as to minimize the number of times

it covers the same free cell; thus, it can be thought of as a cost
function. It also insures that the robot will not get caught in an
endless loop by penalizing it for going over cells it has covered
before. Cell costs should be initialized to zero prior to this step.

Step two calculates the control that will minimize the cost
function of step one. This control is indirect because it is not
based on the knowledge of the ultimate goal of the problem, but
is decentralized in that the goal is to try not to retrace previous
steps as much as possible.

The base algorithm is similar in spirit to the algorithm used
by Shannon (see [12] for a more detailed explanation of Shannon’s
work.) Shannon constructed an electronic mouse that searches a
maze for the “cheese”. Shannon’s maze consists of squares each
of which holds two bits representing four directions. The mouse
is able to search the entire maze by leaving squares 90” to the
left of the previously departed direction.

The following Theorem provides the necessary conditions for

‘A region Rc R is said to be completely covered if all the free cells
z€ R are traversed at least once by the robot.

ZA region R C R? is said to be thoroughly searched if all the free cells
z € R have been interrogated at least once by the robot sensor.

2114

the base algorithm to guarantee complete coverage’ and a thor-
ough search?.

Theorem 1 The base algorithm guarantees complete coverage
and a thorough search in the region R if the set of free cells xe R
have the following property: for all «; and z;€ x there exists a
sequence {zi,...,Z;} such that z; and z,4, are adjacent (in a
four connected sense) and i <k<j.

We prove the above statement by contradiction. If the algo-
rithm is not to guide the robot along a path of complete coverage,
then it must get caught along a circular path. Let

yCcx

where y is the set of free cells that lies on the circular path.
Furthermore, let

p=x-y
Then, after each pass along the circular path,

cell cost(y) = cell-cost(y) + a

while cell_cost{p} remains unchanged. Consequently, based on
the condition in Theorem 1, and at some finite time t, there will
be a cell p;€ p adjacent to some cell y;€ y such that

cell_cost(pi) < cell_cost(y;)

Thus, step two will deviate the robot from the circular path and
cover the cell p;.

Hence, we have shown that no circular path is possible for
an infinite duration of time resulting in complete coverage in
finite time. Since in the worst case a search problem approaches
a coverage problem, we can also guarantee a thorough search
based on the above argument.

We have thus shown that the base algorithm alone is sufficient
to guarantee complete coverage and a thorough search. Unfor-
tunately, however, it does not give us an optimal solution. As a
matter of fact, in practice, its performance is rather poor. The
purpose of each of the remaining two components is to give a
more efficient solution.

3 Looking Ahead in Space

This component of the algorithm utilizes information avail-
able from cells along the line of sight of the robot. One such
datum is whether all the cells in a given direction have been cov-
ered. If all the cells in a given direction have been covered, then
we may penalize the robot for choosing that direction. This cost
function is implemented in Step 2 of the following algorithm.

Another type of information that is available is the distance to
an obstacle or boundary in a given direction. This information
may be used to break possible up-down or right-left ties. We
break such ties by choosing the direction that will bring the robot
to an obstacle or boundary more quickly. This causes the robot
to finis:, covering smaller regions before diverting to cover larger
regions. This operation is performed in step 4 of the following
algorithm.

The base algorithm with look ahead in space:
1. Increment the current cell cost by a.

2. Assign an additional cost of 3 to a direction if all the cells
in that direction from the current position to an obstacle
or boundary have already been covered.

3. Interrogate neighboring cells to determine the least costly
direction in which to travel. Thus, the total cost of traveling
in the direction dir is (provided there are no obstacles:)

direction cost(dir) = cell cost(dir)+ B cost(&).

4. Choose the direction that will bring the robot to a bound-
ary or obstacle more quickly in case of an up-down or right-
left tie. In case of any other tie, choose the direction ac-
cording to the following priority: up, down, right, left.

The addition of this component of the algorithm to the base
algorithm improves the overall performance significantly (see sec-
tion 5 However, further improvement in performance is possible
by identifying cells that do not need to be covered anymore. The
next component of the algorithm recognizes such cells.

4 Looking ahead in time

The purpose of this component of the algorithmis to associate
a large cost with covering cells that need not be covered again. By
assigning such a large cost to a cell, we will practically be treating
that cell as an obstructed cell. Thus, apart from requiring that
these cells be covered, we also require that the condition stated
in Theorem 1 not be violated. This condition will be violated if
the cells penalized are the only ones that provide a traversable
path between two other free cells.

Figure 1 shows five possible situations that might occur. As-
suming all the cells in column "a" have been covered, only in the
first four cases can we associate a large cost with entering any
of the cells in column “a” again. In the last case, it might be

Obstructed Cell

[J Free Cell

Figure 1: Possible obstacle arrangements

required to traverse some of the cells in column “a” in order to
get to the other part of the terrain. Notice that the difference
between the last example and the first four is in the occurrence
of the sequence: (free-cell obstructed cell free-cell] adjacent to
column “a”.

Besides columns or even rows, this idea can be extended as
well to mini-rows and mini-columns. The terms mini-row and
mini-column are used to describe free cells that do not necessarily
lie between the boundaries, but that lie between a boundary or
obstructed cell on one side and a boundary or obstructed cell on
the other. Figure 2 shows examples of these.

We shall now provide the conditions necessary for associ-
ating a large cost with covering certain cells. We shall refer
to cells penalized in this manner as finished cells. Let the set
B = {boundary, obstructed-cell, finished cell}, and let the set

2115

L HHH
] TR
T4]I .
+ F Tmini-column
[..
mini-row

Obstructed Cell T Free Cell

Figure 2: Examples of mini-rows and mini-columns

F = {free-cell}. Furthermore, let the operator + on the set
R (designated R*) describe the new set consisting of elements
formed by concatenating a finite non-zero number of elements
from {R}. Parsing of the regular expression R* is accomplished
by passing elements of the set R through a finite state machine.
For example, [free-cell obstructed-cell free-cell free_cell] is one el-
ement of F+B+F+. Two definitions are now provided for recog-
nizing finished cells. Cells that meet the following criteria should
be assigned a cost of 7.

Definition 1: Cells within the mini-row (or mini-column) T'
may be designated finished if all the following criteria are met.

1. All the cells within T are covered.

2. The adjacent cells on one side of T' form an element of B*.

3. The adjacent cells on the other side of I' do not form an

element of FTBTF+,

4. The robot is not currently in T.

Dednition 2: Cells in between the two rows (or columns)
I'yand I'; may be designated finished if all the following criteria
are met.

1. All the cells in between T’y and I', are covered.
2. The cells of T’y form an element of B¥.
3. The cells of T'; do not form an element of FTB*F+,

4. The robot is not currently in between I'; and TI's.

The cells marked “finished cell candidate” in Figure 3 satisfy
the requirements of Definition 1 provided that requirements 1
and 4 of that definition are also met. Similarly, the cells marked
“finished cell candidate” in Figure 4 satisfy the requirements of
Definition 2 provided that requirements 1 and 4 of that definition
are also met.

T Obstructed Cell

O Free Cell

= Finished Cell

O Finished Cell Candidate

HH

Figure 3: Example of recognizing finished cells using Definition
1

Obstructed Cell

Free Cell

Finished Cell

Finished Cell Candidate

Figure 4: Example of recognizing finished cells using Definition
2

Given the above definitions, we may now present the complete
algorithm for the robot’s decisions at step k. We designate the
mini-row and mini-column that the robot currently occupies as
I'* and k. respectively. Similarly, we designate the mini-row
and mini-column that the robot previously occupied as T*z! and
1‘1‘";1 respectively. The base algorithm with look ahead in space

and look ahead in time:
1. Increment the current cell cost by a.

2. Assign an additional cost of 8 to a direction if all the cells
in that direction from the current position to an obstacle

or boundary have already been covered.

. Use Definition 1 to see whether the cells of I'*;!or I'*-1
may be declared finished. If so, then associate a cost of ¥
to these cells. (Skip this step in the first iteration.)

. Use Definition 1 to see whether the cells of T*_orT*
may be declared finished except for requirement 4 of that
definition. If so, then associate a cost of 6 with traveling in
a direction that would keep the robot in that mini-row or
mini-column.

. Use Definition 2 to detect any other finished cells and as-
sociate a cost of 4 with any found.

Interrogate neighboring cells to determine the least costly
direction in which to travel. Thus, the total cost of traveling
in the direction dir is (provided there are no obstacles:)

direction cost(dir) = cell_cost(dir) + B_cost(dir) +
¥ _cost(dir) +
8 _cost(dir).

Choose the direction that will bring the robot to a bound-
ary or obstacle more quickly in case of an up-down or right-
left tie. In case of any other tie, choose the direction ac-
cording to the following priority: up, down, right, left.

In both Definitions 1 and 2 above, we require that the robot
not be on any of the cells that we are testing. This requirement is
necessary because otherwise, it is possible for other cells around
the robot to be declared finished as well, causing finished cell
costs to cancel leaving the robot with no new information. Step 4
detects this situation and provides incentive for the robot to leave
the mini-row or mini-column so that finished cells can form. By
doing this, we are effectively looking one time unit ahead to the
next robot movement, encouraging the formation of finished cells.

2116

The parameters for the algorithm should be assigned values
according to the following relationship:

a<fB<éd<y

signifying the order of importance of the corresponding cost func-
tions. A difference factor of three in costs works well in experi-
ments.

5 Results

The algorithm was simulated on five different terrains and
the results are given in Figure 5. The color code indicates the
final robot position, the obstacle arrangement, and the number
of times each free cell was covered. In each case, the robot was
initialized to begin at the lower left hand corner of the terrain.

The first column of pictures shows the performance of the
base algorithm. Note that in each of the five cases, the base al-
gorithm was able to cover the entire set of free cells regardless of
the obstacle arrangement. The second column shows the perfor-
mance of the base algorithm with look ahead in space, and the
third column shows the performance of the base algorithm with
look ahead in space and time.

Ideally we would like the robot to cover each cell only once.
However, given the obstacle arrangement, even an optimal al-
gorithm may have to retrace part of its path. Two statistical
measurements were made to compare the performances. Table 1
gives the average number of times each cell was covered. A more
meaningful measure of the performances, however, is to calculate
the RMS deviation of each cell coverage from 1. Thus in an ideal

Mean

Terrain | Alg 1 | Alg 2 | Alg 3
1 1.626 | 1.106 | 1.084

2 2.534 | 1.687 | 1.307
3 3.516 | 1.693 | 1.405
4 | 2681 1.864 | 1.319
5 | 2639 551 | 1356

Table 1: Average cell coverage

case, this number should be zero, indicating that all cells were
covered exactly once. We calculate the deviation as:

o= VE{= -1}
= E{z?}-2E{z} + |

where z is the number of times a cell was covered, E{z} is the
mean value of =, and E{z?} is the mean value of z2. Thus, it can
be seen in Table 2 that the performance of the base algorithm
has increased with the addition of each component., resulting in
a o closer to the ideal value of 0.

Although Figure 5 shows the results of the coverage of ex-
plored terrain problem, the algorithm generates the same results
for the coverage of unexplored terrain problem! For the search
problem, however, the performance of the algorithm is dependent
on whether a terrain model is available or not.

Robot

Obstacle

1 pass

2 passes

3 passes
4 passes
5 passes

6 passes

|
|
=
&
u
w
w

7 passes

Figure 5: Results for the coverage problem

6 Modifications for Search

As opposed to the coverage problem, the search problem does not
require the robot to physically cover every free cell in the terrain.
On the contrary, it is only required to inspect free cells until the
target is located. The following step will make this modification.
0. “Look™ in all four directions for the target. If the target is
detected in that direction, proceed in that direction skip-

ping the other steps. Otherwise, label the cells that were
inspected as having been covered. Use Definition 1to check

for the formation of finished cells starting with the mini-row
and mini-column of the farthest cell inspected and working
back. Associate a cost of ¥ with any finished cells found.

Note that there is no need to be aware of the existence of the
target or know which direction it is in. If the stopping condition
(see section) is met without the detection of the target, it may
be concluded that the target is not present.

2117

o
Alg 2
0.326
0.953
0.922
1187
0,013

Alg1[Alg2] Alg3
0.832
1.988
2.936
.2.056
| 1.963

Terrain
1

S O N

Table 2: RMS deviation of cell coverage from 1

Results are not provided for the search problem since the
performance is so dependent on both the location of the target
in the terrain, and on the range of the sensor (especially in the
search in the unexplored terrain problem.) However, since the
search problem is a subset of the coverage problem, the perfor-
mance of the search algorithm is always better than or equal to
the performance of the coverage problem.

Figura B: Coverage in Explaored and Lnesplaored Terrains
12

Robot

(bstarle

! prsE
2 passrE

3 passes

41 pasoes

b pasaea

B pasies

T passes

7 Modifications for Unexplored Terrains

In the more frequent case of unexplored terrains, we may no
longer assume that we have a model of the terrain. As a result,
we require the robot to build such a model, as it explores the
terrain, for its immediate and possible future use. This model will
be stored in the form of a two dimensional array where each array
element holds information on a corresponding cell in the terrain.
We will start by initializing the array elements to NOT-SEEN.
Then, at the beginning of each iteration, prior to the execution
of any of the steps of the algorithm, perform the following step:

-1. “Look” in all four directions. Put the information obtained
from each cell, for example FREE-CELL, OBSTRUCT-
ED-CELL, or TARGET, into the corresponding array ele-
ment.

Only enter information available from cells that fall within the
robot sensor range. Note that for unexplored terrain problems,
the algorithm requires a robot sensor range of at least one cell.
This requirement is explained in the next section.

Another modification that must be made is in determining
finished cells. When determining whether a group of cells is fin-
ished, information may be required from a cell that is marked
NOT-SEEN. In that case, do not declare that group of cells fin-
ished.

8 The Stopping Conditions

The stopping condition for explored terrain problems is obvious
since all the free cells are known. Thus, for the coverage of the
explored terrain problem, stop when all the free cells have been
covered. For the search in the explored terrain problem, since we
label the cells that were inspected as having been covered, the
stopping condition is the same.

As opposed to the explored terrain problems, the unexplored
terrain problems do not have an obvious stopping condition. The
problem lies in the robot’s not being able to “see” every cell in
the terrain due to obstruction. Figure 6 shows examples of these
“invisible” cells. Hence, we will not be able to stop when all the
cells within the boundary have been identified and all the free
cells covered or inspected. However, assuming a sensor range of
at least one cell, the stopping condition for the coverage in un-
explored terrain problem is simple: repeat until all the identified
free cells have been covered.

We prove that the above condition is sufficient by contradic-
tion. Let x € R denote the set of free cells in the terrain R. Let
y C x be the set of free cells that are covered and let p C x be
the set of free cells that are still marked NOT-SEEN. Based on
the condition in Theorem 1, there must be a cell p; €p adjacent
to a cell y;& y. In that case, with a sensor range of at least one

B Obstructed Cell
J Free Cell
B “Invisible” Cell

Figure 6. Example of “invisible” cells

2118

cell, p; would have been identified as a free cell and the algorithm
would have continued.

For the search in unexplored terrain problem, the stopping
condition may be determined with the addition of the following
operations:

e When “looking” in each of four directions (step 0), if an
obstacle or boundary is detected by the sensor, indicate for
all free cells from the current position to the obstacle or
boundary whether they were scanned horizontally or verti-
cally.

e Tag the current cell as having been scanned in both the
horizontal and vertical directions.

The stopping condition is now simple: repeat until all the iden-
tified free cells have been scanned in both the horizontal and
vertical directions. If this condition is met without the detection
of the target, it may be concluded that the target is not present
in the terrain.

We prove that the above condition is sufficient by contradic-
tion again. Let x¢ R denote the set of free cells in the terrain
R. Lety C x be the set of free cells that were scanned both hor-
izontally and vertically and let P C x be the set of free cells that
are still marked NOT_SEEN. Based on the condition in Theorem
1, there must be a cell p;€p adjacent to a cell y;€y. Ify; was
tagged because of the second operation, then p; would have been
identified as a free cell (assuming a sensor range of at least one
cell.) Otherwise, if y; was tagged because of the first operation,
p; would have been scanned in at least one direction since we

tag all cells until detecting an obstacle or boundary. As a result,
the algorithm would have continued. More informally, we argue
that by tagging cells only if an obstacle or boundary is detected,
we are guaranteed to have “looked” around every corner for the
target.

Note that the stopping condition efficiency for the search
problem depends on the robot sensor range. In the worst case,
with a robot sensor range of just one cell, the entire terrain must
be covered before we can conclude that the target is not present.
With longer sensor range, a better chance exists of detecting
an obstacle or boundary so that we may tag cells to have been
scanned both horizontally and vertically without covering those
cells.

When the stopping condition is met in the coverage of unex-
plored terrain problem, the remaining cells that are still marked
NOT-SEEN should be identified as OBSTRUCTED-CELL in or-
der to complete the terrain model. In the case of the search in
unexplored terrain problem, the above method may be used to
obtain a complete terrain model only if the target is not found,
thus guaranteeing that the entire terrain was thoroughly searched
(explored.)

9 Conclusion

An algorithm is presented in this paper that is both simple to
understand and simple to implement, yet it solves four different
problems, each of which is a conceivably difficult problem. One
reason for the simplicity of this algorithm is in its use of indi-
rect control. By using indirect control, we are not attempting to
solve the problem explicitly, but we are allowing the algorithm
to solve the problem for us. This strategy is consistent with
minimization-search approaches in that the robot motion is al-

ways a step in the direction of steepest descent. Following the
indirect control philosophy, however, we allow the algorithm to
build the energy surface dynamically rather than specifying that
surface a priori. Using this approach, we were able to guarantee
complete coverage and a thorough search in terrains where the
free cells are connected as defined in Theorem 1.

Thinking in terms of indirect control when designing an intel-
ligent system helps for two reasons. The first reason is that the
algorithm is simplified because there are fewer variables involved
(as opposed to planning a complete path for the robot, for exam-
ple.) The second reason is that indirect control algorithms are
more intuitive. For example, describing planetary motion about
the Sun in terms of a distortion of space time is more intuitive
than describing it in terms of Kepler’'s laws. By the same anal-
ogy, we are distorting the terrain on which the robot navigates
by associating costs with traversing various regions of it. As a
result, the robot is forced to “fall” towards cells with lower cost
just as the planets “fall” towards the Sun due to a distortion of
space time.

We note that the coverage of explored terrain problem is
equivalent to the well known traveling salesman problem con-
strained by only allowing the salesman to travel to adjacent cities
and defining cities to be free cells. Also, we note that the end
result of our algorithm on unexplored terrains is equivalent to
the end result of region growing’or connected component al-
gorithms used in computer vision. At the end of a coverage of
unexplored terrain problem, for example, the terrain is divided
into traversable and non-traversable regions. Although the result
is the same (connected components,) direct use of either raster
scan methods from vision [lI] or graph-theoretic methods [3] is
not appropriate to this problem, since the robot cannot “scan
across” obstacles, and the graph must be built as part of the
exploration process.

References

[l R. Brooks. Solving the find-path problem by good repre-
sentation of free space. |[EEE Trans. Systems, Man and
Cybernetics, 13(2):190--197, 1982.

[2] R. Chattergy. Some heuristics for the navigation of a robot.
The International J. of Robotics Research, 4(1):59-66, 1985.

[3] J. E. Hopcroft and J. D. Ullman. Set merging algorithms.
SIAM J. Comput., 2(4):294-303,1973.

[4] Sungtaeg Jun and Kang G. Shin. A probablistir approach to
collision-free robot path planning. 1988 |IEEE International
Conference on Robotics and Automation, 1:220-225, 1988.

[5] S. Kambhampati and L. S. Davis. Multiresolutional path
planning for mobile robots. IEEE J. of Robotics and Au-
tomation, R.A-2:135-145, 1986.

[6] Yutaka Kanayama. Least cost paths with algebraic cost
functions. 1988 |IEEE International Conference on Robotics
and Automation, 1:75-80, 1988.

[7] T. Loxano-Perez and M. Wesley. An algorithm for planning
collision-free paths among polyhedral obstacles. C.A CM,
22:560-570, 1979.

‘Region growing refers to the grouping of individual pixels into distinct
regions.

2119

[8] E. Moore. Shortest path through a maze. Annals of the
Computation Lab. of Harvard Univ., 30:285-292, 1959.

P. F. Rowat. Representing spatial experience and solving
spatial problems in a simulated robot environment. Doctoral
thesis, University of British Columbia, 1979.

£

[10] J. T. Schwartz and C. Yap, editors. Advances in Robotics.
Lawrence Erlbaum Associates, 1987.

W. E. Snyder and C. D. Savage. Content-addressable
read/write memories for image analysis. IEEE Trans. Com-
puters, 31:963-968, 1982.

[

[12] 1. Sutherland. A method for solving arbitrary-wall mazes
by computer. |EEE Trans. Computers, C-18(12):1092-1097,

1969.

